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A previously described algorithm [T.A. Brunner, T.J. Urbatsch, T.M. Evans, N.A. Gentile,
Comparison of four parallel algorithms for domain decomposed implicit Monte Carlo, Jour-
nal of Computational Physics 212 (2) (2006) 527–539] for doing domain decomposed par-
ticle Monte Carlo calculations in the context of thermal radiation transport has been
improved. It has been extended to support cases where the number of particles in a time
step are unknown at the beginning of the time step. This situation arises when various
physical processes, such as neutron transport, can generate additional particles during
the time step, or when particle splitting is used for variance reduction. Additionally, several
race conditions that existed in the previous algorithm and could cause code hangs have
been fixed. This new algorithm is believed to be robust against all race conditions. The
parallel scalability of the new algorithm remains excellent.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In any domain decomposed particle Monte Carlo code, two types of information need to be exchanged between the pro-
cessors. Most obviously, the particles that cross domain boundaries need to be sent to the new processor. Additionally, all
processors must coordinate exiting the particle processing loop at the end of the time step when all the particles have
finished.

We have found that two key aspects make this new algorithm scalable and robust. The first is that all communications
must be asynchronous. The second is that no single processor can have a disproportionate amount of communication work
relative to the others. We will first describe in the abstract case how we send and receive all the messages. We will then
describe in more detail the specifics of what is communicated.

Using asynchronous communication for all point-to-point communications allows maximal overlap between compu-
tational work and communication, and results in increased parallel efficiency. Nonblocking receives are posted for all
possible incoming messages. When an incoming message is detected, the data is appropriately handled and another non-
blocking receive is immediately posted. All outgoing messages are also sent with the nonblocking sends – this is critical
to avoid race conditions. The outgoing message is copied to a new buffer so that the processing algorithm can reuse the
working buffer immediately. The outgoing buffers are freed once it has been confirmed that the message has been
received.
. All rights reserved.
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Early versions of the algorithm [1,2] had all control messages sent directly to and from the root processor. In this case
with more than a few tens of processors, the root processor has significantly more work managing the communications
and quickly falls behind on processing particles, thus destroying scalability. This point is not new [1], but we want to reem-
phasize this point here as it is critical to the scalability of the entire algorithm.

All outstanding messages are checked for completion after a certain number of local particles, Nperiod, have completed, or
continually if there are no particles left to simulate on the local processor. At the end of the time step, all nonblocking receive
requests are canceled.

2. Description of the algorithm

The complete algorithm is shown in Algorithm 1, with details of distinct tasks within the algorithm shown in Algorithms
2–4. We will use the notation ‘‘(Line 2.7)” to refer to line 7 of Algorithm 2 when describing the details.

A key difference between this algorithm and the previous one [1] is that the number of particles created is collected in
addition to the number of particles completed. This supports arbitrary physics where the number of particles to simulate
is not known at the beginning of a time step. This collection of particle counts is also done in a nonblocking (or asynchronous)
way, allowing maximal overlap of work and communication. Again, all communications (particle transfers, particle count col-
lection, and control messages) are done with nonblocking, or asynchronous, messages.

2.1. Particle transfers

When a particle hits a domain boundary, it must be sent to the processor that owns the new part of the domain. The de-
tails are shown in Algorithm 2.

The particles are first added to a buffer (Line 2.7) that has a maximum size of Nbuffer. One buffer is associated with each
neighbor processor. When the maximum number of particles has been added to the buffer, it is sent to the neighboring pro-
cessor (Line 2.9). The buffer is also flushed when all local particles have been processed and there is no other work to do, even
if it is only partially full (Line 4.2). The actual number of particles sent is encoded into the message along with the particle
data so that the receiving processor has this information (Line 3.5).
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Each processor also posts a nonblocking receive for each neighbor processor (Line 1.3), with enough storage for the max-
imum number of particles that a buffer can hold, Nbuffer. When an incoming message is detected (Line 3.4), the buffer is pro-
cessed and the particles put on the simulation particle list.

2.2. Coordinating the end of the time step

In order to determine that all the particles have finished, the number of particles created and completed during a time
step on each processor are tallied. When the instantaneous global sum of these two tallies match, the time step is over. This
is only possible to do with a globally synchronized operation, such as a blocking global sum, but these can be expensive since
they require synchronization between all processors. Instead of performing the expensive blocking global sum multiple
times within a time step, we first estimate the global sum with a nonblocking sum that asynchronously collects the tallies
from all processors to the root processor, which also does particle computations. When the estimated global sums of the par-
ticles created and completed match, a blocking global sum is initiated.

This two-phase determination of the end of the time step is necessary because the asynchronous global sum may erro-
neously match, indicating the end of the time step before all particles have actually finished. For example, Fig. 1 shows one
situation when the estimated sums of the total born and total completed don’t match the true global sums. In this case, a



When the estimated global sums of the two tallies match on the root pbinary tree from parents to children signaling each processor that the tim
ing global sum, even if a local processor is still working on particles (Lin
particle is born on one processor, and is transferred to another processor. The original processor then has no work to do and
sends its tally to the root processor. Meanwhile on the second processor, the particle splits. One half of the particle on the
processor takes a long time to finish, but the other half quickly moves to another processor and is terminated. The third pro-
cessor, with no work to do, sends its tallies to the root. The root processor only sees that one particle was born and finished;
it does not know about the split. The blocking global sum prevents this situation from erroneously ending the time step.

To efficiently estimate these global sums, we set up a nonblocking global sum that uses nonblocking communication calls
instead of blocking ones. A binary tree communication pattern is set up where each processor, except the root, has one par-
ent and at most two children. This tree, shown in Fig. 2, is used to send various messages to the root or from the root out to
all the processors. A binary tree spreads the extra communication work of coordinating the end of time step to all processors.
Sending all data directly to the root processor puts too much extra work on the root, and leads to poor scaling [1].

Each processor posts nonblocking receives for incoming messages from its children to collect the estimated particle
counts (Line 1.12). When an incoming message is received (Line 3.9), the off-processor counts are added to the local proces-
sor’s counts. When there is no more local work to do, each processor sends the counts to its parent in the binary tree (Line
4.3), and the local counts are reset.
rocessor, a message (Line 4.7) is sent up thee step might be over and to initiate a block-
e 3.11). If the counts in the blocking globalsums match, the time step is over. The estimated nonblocking global sums continue until their sums match the block-ing (Line 4.10) – all messages from the nonblocking send need to be collected or else they will be erroneously receivedin the next time step. When all the counts match, another message is sent through the nonblocking communicationtree (Line 4.15) telling each processor that the time step is really finished now, and all processors exit the processingloop. Until this message is received, processors keep processing Algorithm 3, checking for the ‘‘maybe done” message,incoming particles from neighboring processors, or processing the asynchronous sum messages. If the blocking globalsum counts do not match, the processing continues as before, waiting until the next time the estimated nonblockingglobal sums match.T.A. Brunner, P.S. Brantley / Journal of Computational Physics 228 (2009) 3882–38903885
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Fig. 2. The estimated global sums of particle tallies are collected down the binary tree, following the green arrows. Control messages for initiating a
blocking sum or terminating the time step flow up the tree, following the blue arrows.
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Fig. 1. One mechanism of how the nonblocking estimated global sums could lead to false completion of the time step.
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Note that two sets of tallies for the number of created and completed particles are needed on each processor. The first set,
localPlusChildrenCreated and localPlusChildrenCompleted, is for the estimated nonblocking sum; their counts are reset to zero
(Line 4.17) when their values are sent to the parent and may contain the counts of all children processors. The second set,
localOnlyCreated and localOnlyCompleted, is purely local, and they are used in the blocking global sum (Line 4.8). They are not
reset until the next time step.
3. Results

The performance of the algorithm is studied using two test problems, the first an Implicit Monte Carlo (IMC) [3] thermal
radiation transport problem and the second a particle Monte Carlo neutronics [4] test problem. Both are designed to be per-
fectly load balanced and keep a constant amount of work per processor in the weak scaling studies.

3.1. Problem descriptions

The IMC problem models a uniform box of material [1] in thermal equilibrium with the radiation. Each processor simu-
lates a one centimeter cube with 30 zones per side, for a total of 27,000 zones per processor. There are on average 10 particles
per zone. All external boundaries are reflecting. The box is filled with a uniform, hot material at T = 1 keV, a density of
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q ¼ 1000 kg=m3, and a heat capacity of Cv ¼ 5� 109 J=K kg. The absorption and scattering cross sections are ra ¼ 50 cm�1

and rs ¼ 10 cm�1. Ten constant time steps were computed with Dt ¼ 3� 10�9 s. Besides a straight forward IMC calculation,
two other modifications were also run in order to stress the algorithm for an unknown number of particles. We artificially
split some of the photons during each time step. When a particle is split, the new particle’s random number sequence is ini-
tialized by using a cryptographic hashing algorithm; no communication is needed to initialize the new particle. Three split
fractions were used for the tests, 0%, 10%, and 50%. These problems were run on Red Storm [5], a 12,960 node Cray XT3 with
one dual-core processor each, at Sandia National Laboratories.

We tested the ParticleMC Monte Carlo particle transport package [6], developed for inertial confinement fusion (ICF)
applications [7], with another uniform infinite medium problem. The medium is equimolar deuterium and tritium with a
temperature of T ¼ 25 keV and a density of q ¼ 250 g=cm3, specifications representative of an ICF capsule simulation [7].
All external boundaries are reflecting. In all cases, twenty constant sized time steps were computed with Dt ¼ 10�11 s. A spa-
tially uniform, isotropic source of neutrons with initial energy 14 MeV and a constant source rate of 5� 109 s�1, or one phys-
ical neutron total sourced into the problem, is used to represent neutrons from deuterium–tritium thermonuclear reactions.
For these specifications, the zone size in the simulations described below is on the order of a mean free path at the initial
source energy (analogous to the IMC simulations). The nuclear cross section data is represented using 175 neutron energy
groups, although the Monte Carlo neutrons have a continuous energy value. Both deuterium and tritium can undergo a neu-
tron-induced (n, 2n) reaction resulting in the production of additional neutrons. For this test problem, approximately 2.5% of
all deuterium nuclear reactions are (n, 2n) reactions, while for tritium the fraction is approximately 1%. When a new neutron
is produced, the random number sequence for the new particle is initialized using a cryptographic hash algorithm with no
parallel communication required. Unlike the IMC problem, the number of zones and particles per zone were varied in the
problems below. All ParticleMC test problems were run on Purple [8], a 1534 node IBM machine with eight Power5
1.9 GHz processors per node, at Lawrence Livermore National Laboratory.

3.2. Finding good parameter values

The algorithm has two free parameters, the maximum buffer size, Nbuffer, and the message check period, Nperiod. Each test
problem was run on 64 processors and each parameter was varied from 1 to 16,384 to find the minimum run time for these
problems. For the IMC test, we used the physical parameters listed in the previous section. Each run for the IMC was only
done once. For the particle Monte Carlo, the infinite medium was simulated using a unit cube with reflecting boundaries.
The mesh used 50 zones per side (125,00 total zones) and was decomposed into 64 domains. A total of 107 Monte Carlo neu-
trons were followed per time step (80 particles per zone, on average). Each parameter combination was run five times and
the results averaged. The results are shown in Fig. 3.

Essentially the same result was obtained for significantly different transport physics on two different machines. When
either Nbuffer or Nperiod were set to one, too much time is spent doing communication work, and the total run time is very long.
Away from these obviously poor choices, the run time is a very shallow function of either parameter. The parameters that
gave the minimum run time were Nperiod = 16,384 and Nbuffer ¼ 512 for the IMC and Nperiod ¼ 1024 and Nbuffer ¼ 1024 for
particle Monte Carlo. We used these values in all the subsequent runs below.
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Nbuffer ¼ 512 for IMC and Nperiod ¼ 1024 and Nbuffer ¼ 1024 for ParticleMC.



3888 T.A. Brunner, P.S. Brantley / Journal of Computational Physics 228 (2009) 3882–3890
The run time generally improved as the completed messages were checked less frequently. This is because it is generally
better to do real work while there is work to do, and save the communication work until the end. On the other hand, rela-
tively short buffer sizes seemed to be better than very long messages. With smaller buffer sizes, work is made available to
neighbors sooner, which can help in load-imbalanced cases. The old algorithm [1] would lock if the message check period
was larger than the maximum buffer size.

While the absolute ideal set of parameters is likely machine- and problem-dependent, in practice we have noticed that
any set of reasonably-chosen values performs well for a wide range of problems. In fact, both sets of runs gave very similar
results, despite simulating different physics and running on different computer architectures.

3.3. A strong scaling study

Next we tested each package in a strong scaling study, where a constant sized problem is spread onto more and more
processors. The amount of real work stays constant and the amount of communication work increases. For this study, the
particle Monte Carlo package used the same mesh and number of Monte Carlo particles as in the parameter scan above.
Fig. 4 shows the results of increasing the number of spatial domains.

Initially, the efficiency for both physics packages rises above 100% until approximately 125–216 processors. In order to
understand how the efficiency increased, we ran a series of serial-only calculations, where the domain size was shrunk. Each
simulation size corresponded to one of the sizes in the IMC domain decomposed strong scaling study. Ideally for this set of
serial calculations, the run time should decrease linearly with the number of zones and particles in the domain, but the run
time actually decreased faster. We attributed the super-linear speedup to more of the problem fitting into the faster cache
memory of the processor, which reduces the need for the processor to access the slower, main memory. We then plotted this
set of serial runs in Fig. 4 as if they were part of the strong scaling study, since they represent the ideal speedup of the prob-
lem if there was no communication present.

Eventually, however, the communication dominates the simulation time, and the efficiency drops below 100% for the 343
processor runs. At 1000 processors, the IMC simulation only has 27 zones and 270 photons per processor, while the particle
Monte Carlo simulation has 125 zones and 10,000 Monte Carlo neutrons per processor. Since the initial particle Monte Carlo
calculation was bigger than the IMC calculation, it has more work to do per processor for a given decomposition, so it scales
slightly better. Increasing the arbitrary split fraction for the IMC problem also increases the amount of work per processor
and thus increases its efficiency. Despite simulating different transport physics on different machines, the algorithm per-
forms very similarly for both problems.

3.4. A weak scaling study

We also tested the algorithms in a weak scaling study, where the amount of real work per processor remains constant.
In this case, we do this by increasing the problem domain. Each processor simulates a one centimeter cube of the infinite
medium. The particle Monte Carlo package had 25 zones in each direction of the mesh with 640,000 Monte Carlo neu-
trons per domain per time step. The IMC was tested with the same cube as described above. The results are shown in
Fig. 5.

In both physics, the efficiency drops off until 27 processors are employed. Because the domains in this case are ar-
rayed spatially in a three by three cube, this is the first configuration in which one processor communicates with six
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neighbors. After this point the work to communication remains constant. And indeed, the scaling stays roughly constant
for the IMC at about 88% until we get to many thousands of processors. The split fraction in the IMC simulations had
virtually no effect on the scalability of the algorithm. At 3375 processors, there is an unexplained drop in the efficiency,
but the efficiency stays above 80% to nearly 6000 processors. In all cases there was only one blocking global sum exe-
cuted; in none of our tests could we force the estimated non-blocking sums to trigger a blocking sum before the time
step was actually complete. (We have seen this happen in much more complicated user problems, however.) The particle
Monte Carlo efficiency drops a little sooner. In addition to being run on a different machine, the processors were not
completely load balanced, contrary to the problem design. The algorithm used to decompose the domain was designed
to work for purely unstructured problems, and it is difficult to make it decompose the problem into pure cubes. For
example, in the 729 processor case, where the particle Monte Carlo has the drop-off, the zone count per processor varies
between 11,812 and 16,642. Nonetheless, the weak scaling for the ParticleMC problem remains above 80% up to 2744
processors.
4. Conclusions

This new algorithm is much more robust than the one described previously [1,2]. It scales well for load balanced prob-
lems, but this algorithm will not scale well on problems that are not load balanced. Other techniques, such as a combination
of domain replication and domain decomposition or dynamic mesh load balancing, will need to be employed to boost the
parallel efficiency on real problems. These techniques are currently under investigation.

Additionally, when this algorithm was employed in real problems using IMC physics, we noticed significant run-time var-
iability with the parameters of Nbuffer ¼ 512 and Nperiod = 16,384. If we changed the values to be similar to the values deter-
mined for the particle Monte Carlo, the run-time variability was significantly reduced. We currently speculate that MPI or
the underlying network could not support the number of outstanding messages that the original parameters yielded, and
checking more frequently and sending fewer buffers (because they are bigger) reduced the number of messages. This needs
to be investigated further, however.
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